Classification and regression trees

Michael Friendly
December 7, 2015

Recursive partitioning methods provide an alternative to (generalized) linear models for categorical re-
sponses, particularly when there are numerous potential predictors and/or there are important interactions
among predictors.

These methods attempt to define a set of rules to classify observations into mutually exclusive subsets
based on combinations of the explanatory variables. In contrast to linear models, where it is necessary to
explicitly specify the form of all model terms, recursive partitioning methods tend to work well when there
are important non-linearities or interactions in the data. The combination of splits for several variables
expresses an interaction in the linear model sense.

We illustrate some of the ideas behind these methods with the rpart package, for fitting recursive parti-
tioning trees,! and the party package, which embeds tree-structured models within a general framework of
conditional inference procedures.

1 Regression trees with rpart

For a binary response variable, rpart () fits a tree to predict the outcome using a two-stage procedure:

1. First, the observations are partitioned into prediction classes (e.g., “lived”, “died”) by using univariate,
binary splits on the available predictors in a recursive way.

2. A second stage is then applied to evaluate the resulting binary tree, using some methods of testing and
cross-validation to prune the tree according to some criterion.

In the first stage, tree is built by the following process:

e First the single variable is found which best splits the data into two groups.

e The data is separated, and then this process is applied separately to each sub-group

e These steps are applied recursively until the sub-groups either reach a minimum size or until no
improvement can be made.

In practical use, there are many options and parameters to control the details of the analysis, such as

e the minimum number of observations in a node for a split to be made (minsplit),
e a complexity parameter (cp) measuring the “cost” of adding another variable to the model,
e the maximum depth (maxdepth) of any node in the final tree, and so forth.

These can be set in the call to rpart (), using arguments described in help(rpart.control).

Example: Survival on the Titanic: Recursive partitioning trees [titanic-tree]

This example uses the Titanicp from vcdExtra data we have examined in other examples in the book.
We first fit an rpart() tree to predict survival using only age and passenger class. The rpart.plot package
can plot such trees, and provides numerous options to control the details of what is plotted for each node.
The focus here is on visualization methods for interpreting the results.

Irpart is an R implementation of the CART (Classification and Regression Trees) book and software of Breiman et al. (1984)

library(rpart)

library(rpart.plot)

data(Titanicp, package="vcdExtra")

rp0 <- rpart(survived ~ pclass + age, data=Titanicp)
rpart.plot(rp0, type=0, extra=2, cex=1.5)

ves) Pclass =3rd

died \\\\\\

>=16
528 /709 /age
_ survived
pclass = 2nd\ 34136
died
>= 60
157 / 249 age
died survived
15/21 187 /294

Figure 1: Classification tree for passengers on the Titanic, using pclass and age.

The basic tree shown in Figure 1 displays the levels of the variables used for classification at each node.
The tree is read as follows: Each non-terminal (unboxed) node represents a decision based on one variable,
where the left branch corresponds to TRUE and the right branch FALSE. Each terminal node, with an oval,
can be used to show various statistics about the classification of the cases in that subset of the data.

For example, the first split separates 3"¢ class passengers from the rest, and the next split on the right is
between those older than 16, in class 1 and 2. The terminal nodes (leaves) with ovals indicate the prediction
for that partition and number who lived or died out of the total in that subgroup. For example, those
with age<16 in class 1 and 2 are predicted to have survived and 34 out of 36 did so. The bottom left leaf
represents 15 class passengers with age<60, where 187 out of 294 survived.

Printing the resulting "rpart” object (rp0, here) gives a text representation of the model. The legend
indicates that each line contains the node number, splitting variable and value (split), the number (n) of
observations at that node, the number (1oss) of observations incorrectly classified, the predicted classification
at that node (yval), and the probabilities of the response classes at that node (yprob). Leaf nodes are
indicated by the trailing "*".

rp0

n= 1309

##

node), split, n, loss, yval, (yprob)

* denotes terminal node

#i#

1) root 1309 500 died (0.61802903 0.38197097)

#Hit 2) pclass=3rd 709 181 died (0.74471086 0.25528914) =*

#i# 3) pclass=1st,2nd 600 281 survived (0.46833333 0.53166667)

6) age>=15.5 564 279 survived (0.49468085 0.50531915)

Hit 12) pclass=2nd 249 92 died (0.63052209 0.36947791) *

13) pclass=1st 315 122 survived (0.38730159 0.61269841)

26) age>=60.5 21 6 died (0.71428571 0.28571429) x*

27) age< 60.5 294 107 survived (0.36394558 0.63605442) *
7) age< 15.5 36 2 survived (0.05555556 0.94444444) *

The information here is a faithful textual representation of the tree, but much harder to read than the
visual representation in Figure 1.

Any such recursive partitioning tree can be visualized instead by a treemap or partition map, which
divides a unit rectangle into regions based on the variable splits.? This is easiest to show for two variables,
where we can also plot the individual observations. Figure 2 is the treemap representation of the tree in
Figure 1. The R code uses basic plot () facilities and isn’t shown here.

o -. predict: died
.f | u
8 ...'_.i_.:l'' - .. 0 -
}.'. .-.s’...' .-o'l-
-.i_-g.'.‘.;, - o :'
. o L
ey & .
2’ <or i '.. '.f| h‘.ll.l
Mo 1 2n
Ay b R
sty i
81 e et o
A
predict:' survived ERTIP
| | | ,
1 2 3

Class (jittered)

Figure 2: Partition map for the tree in Figure 1. Those in the shaded region are predicted to have died;
observations are shown by red circles (died) and blue squares (survived)

A similar treemap can be produced using the plotmo package. This has many options for plotting a model
response in models with one or two predictors. In the call below, type2="image" says to plot the two-way
effect of pclass:age as a shaded image.

library(plotmo)

plotmo(rp0, nresponse="survived", degreel=0, type2="image",
col.image=gray(seq(.6, 1,.05)),
col.response=ifelse(Titanicp$survived=="died", "red", "blue"),
pch=ifelse(Titanicp$survived=="died", 15, 16))

2The idea for this plot comes from Varian (2013), http://people.ischool.berkeley.edu/~hal/Papers/2013/ml.pdf.

survived type=prob rpart(survived~pclass+age, data=T...

pclass: age

age

1st 2nd 3rd

Figure 3: plotmo() plot for the tree in Figure 1. Shading level is proportional to the predicted probability
of survival.

plotmo() is much more general than this, and can handle models fit with 1m(), glm(), gam(), 1da()
and others in addition to rpart(). Similar to an effects plot, it allows plotting the response in a model
as one or two predictors are varied, holding all other predictors constant (continuous variables at their
medians; factors, at their first level, by default). By default, the function plots the response for all main
effects (degreel=) and all two-way effects (degree2=) in a single multi-panel plot. Here we produce them
separately, in order to lay them out side-by-side.

one-way plots

plotmo(rp0, nresponse="survived", degreel=1, degree2=0, trace=-1, do.par=FALSE)
plotmo(rpO, nresponse="survived", degreel=2, degree2=0, trace=-1, do.par=FALSE)
two-way, 3D persp plot

plotmo(rpO, nresponse="survived", degreel=0, trace=-1)

Note that the image plot in Figure 3 is a view from above of the 3D right panel in Figure 4. Some
care is needed in interpreting the one-way plots When there are factors in the model, because the default
“constant” value is the first level of a factor. For example, the middle plot shows the predictions for age for
those in 1°¢ class.® This can be seen in as the profile of the right-most step function in the 3D image in the
right panels Figure 3.

Pruning

At each split, rpart () calculates a number of statistics, including a complexity parameter (cp) and measures
of the error (error) in classification, as well as the mean (xerror) and standard deviation (xstd) of the
errors in the cross-validated prediction. This information can be printed using printcp() and plotted with
printcp(), as shown in Figure 5.

3Effect plots, in the effects package provide a more general way to average over factors, but are not available for "rpart”
models

pclass age survived type=prob rpart(survived~pclass+age, data=Titanic...

pclass: age

Figure 4: Other plotmo() plots: one-way and two-way effects

printcp(rp0)

#i#

Classification tree:

rpart(formula = survived ~ pclass + age, data = Titanicp)
##

Variables actually used in tree construction:

[1] age pclass

##

Root node error: 500/1309 = 0.38197

##

n= 1309

##

#i# CP nsplit rel error xerror xstd
1 0.076 0 1.000 1.000 0.035158
2 0.065 1 0.924 0.994 0.035117
3 0.018 3 0.794 0.818 0.033538
4 0.010 4 0.776 0.792 0.033239

plotcp(rp0, 1ty=2, col="red", lwd=2)

There is not really any need to prune this small tree, but for illustration, we can use this information to
prune the tree, and then plot the pruned result, this time with additional options (Figure 6). The option
extra=2 shows the classification of the observations that reach each node and box.col allows the node ovals
to be colored.

rp0.pruned <- prune(rp0, cp=.05)

rpart.plot(rp0.pruned, type=0, extra=2, cex=1.5,
under=TRUE, box.col=c("pink", "lightblue") [rp0.pruned$frame$yvall)

Larger models

Continuing, we now include sez and sibsp (number of siblings and parents) among the predictors.
rpl = rpart(survived ~ pclass + sex + age + sibsp, data=Titanicp)

In the table of complexity parameters, there is no evidence of a need to prune this tree.

size of tree

1.1

1.0

X-val Relative Error
0.9

0.8
1

0.7

Inf 0.07 0.034 0.013

Figure 5: Plot of complexity and error statistics. The dashed horizontal line is drawn 1 SE above the
minimum of the curve.

yes] Pclass =3rd

@ age >= 16

528 /709

pclass = 2nd

34/36

(@ed)

1577249 193/315

Figure 6: Classification tree for passengers on the Titanic, pruned

printcp(rpl)

##

Classification tree:

rpart(formula = survived ~ pclass + sex + age + sibsp, data = Titanicp)
##

##
##
##
#Hit
Hit
##
##
##
#i#t
#Hit
##
##
##
#i#

Variables actually used in tree construction:
[1] age pclass sex sibsp

Root node error: 500/1309 = 0.38197

n= 1309

CP nsplit rel error xerror xstd
1 0.424 0 1.000 1.000 0.035158
2 0.021 1 0.576 0.576 0.029976
3 0.015 3 0.534 0.596 0.030342
4 0.014 5 0.504 0.580 0.030050
5 0.012 7 0.476 0.540 0.029279
6 0.010 8 0.464 0.522 0.028911

We plot the tree, using the rpart.plot() again, giving Figure 7.

rpart.plot(rpl, type=4, extra=2, faclen=0, under=TRUE, cex=1.1,

box.col=c("pink", "lightblue") [rpl$frame$yvall)

809 /1309

sex = male

Y, 682/843 339/466
age >=9.5 pclass = 3rd
660/ 796 110/ 216 233 /250
sibsp >=2.5 sibsp>=2.5
19/20 24127 18/21 J 103 /195
age >= 16
/ 83/162 24133
age >=28
36/58 571104
/
age <22
17/28 46176

Figure 7: Plot of the extended rpart () tree for four predictors

sez is now the primary splitting variables. Interestingly, among male passengers, with an overall low

survival rate, survival is next predicted by age and then family size (sibsp); passenger class doesn’t matter
here. Among female passengers, those in class 1 and 2 are predicted to survive, regardless of other predictors,
while predictions for those in 3"¢ class with large families (sibsp ge 2.5) are gloomy (“died”), but among
those in smaller predicted outcome depends on age.

This example nicely illustrates the difference between tree-based models and standard (generalized) linear

models for a binary response. Recursive partitioning methods provide a nested set of decision rules depending

on various subsets of the predictor variable values. There is no need, within these methods to ask or test
whether the predictor effects are linear or nonlinear, nor is there an need to model interactions among
predictors explicitly (which ones?), because the recursive partioning of the observations automatically takes
care of combinations of predictors that appear in the various branches.

A

2 Regression trees with party

rpart () classification trees use internal cross-validation to balance model complexity against goodness of
fit, particularly for out-of-sample prediction. The complexity parameter (cp) mentioned earlier imposes a
cost for having many branches, in a way analogous to other shrinkage methods (lasso, ridge regression, etc.)
and statistics (AIC, BIC).

However, these methods are subject to overfitting (hence, the need for pruning) and have an ad hoc flavor,
since they don’t use any statistical notion to distinguish significant from insignificant improvements with
additional splits. The conditional inference framework embodied in the party package solves these problems
by embedding recursive partioning methods within a general theory of permutation tests stemming from
Strasser and Weber (1999)

Essentially, a linear statistic is calculated to test the hypothesis of independence between the response, Y,
and each predictor. A p-value for that test can be calculated with reference to the permutation distribution
over all permutations of Y. The procedure stops if none of the predictors allows this null hypothesis to be
rejected; otherwise the variable with the strongest association to Y is selected for the next split.

Example: Conditional inference trees [titanic-ctree]

Here we fit a conditional inference tree, using ctree () from the party package and the predictors pclass,
sex and age.

library(party)
titanic.ctree = ctree(survived ~ pclass + sex + age, data=Titanicp)
titanic.ctree

##

Conditional inference tree with 8 terminal nodes

##

Response: survived

Inputs: pclass, sex, age

Number of observations: 1309

##

1) sex == {male}; criterion = 1, statistic = 365.607

2) pclass == {1st}; criterion = 1, statistic = 32.994

3) age <= 54; criterion = 0.992, statistic = 9.079
#i# 4)* weights = 151

#it 3) age > 54

5)* weights = 28

2) pclass == {2nd, 3rd}

#i 6) age <= 9; criterion = 1, statistic = 25.406

7) pclass == {2nd}; criterion = 0.998, statistic = 12.103
#it 8)* weights = 11

#i# 7) pclass == {3rd}

9)* weights = 29

6) age > 9

10)* weights = 624

1) sex == {female}
#it 11) pclass == {1st, 2nd}; criterion = 1, statistic = 115.454
#i#t 12) pclass == {2nd}; criterion = 0.956, statistic = 5.911

#i# 13)* weights = 106

#i# 12) pclass == {1st}
14)* weights = 144
11) pclass == {3rd}

16)* weights = 216

The plot() method for "ctree” objects is very flexible. The following call produces Figure 8. Each
non-terminal node is labeled with the p-value for that split, and the barplot for each leaf node shows the
proportion of survivors on that branch. The arguments to plot.ctree() can include panel functions used

to plot the interior nodes (inner_panel=node_inner here) and leaf nodes (terminal_panel=node_barplot
here).

plot(titanic.ctree,
tp_args = list(fill
ip_args = list(fill
)

c("blue", "lightgray")),
c("lightgreen"))

female

pclass
p <0.001

{1st, 2nd} 3rd

6]
age pclass
p < 0.001 p = 0.044

>9
-0 \ 2nd 1st
2nd 3rd / \
/ N\

Node 4 (n = 15}) Node 5 (n = Zq_) Node 8 (n = 1J1) Node 9 (n = 2%_) Node 10 (n = 6214)Node 13(n= 1(16)\lode 14 (n= 14-1L4)Node 15(n= 2316)
° ° ° ° =l =l e}

{2nd, 3rd}

°

Q Q Q Q Q Q Q Q

S 08 5 0.8 5 0.8 5 0.8 5 0.8 5 0.8 5 0.8 © 0.8
0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

© © ° © ° ° e} ©

g 04 ¢ 04 ¢ 04 ¢ 04 ¢ 04 ¢ 04 ¢ 04 ¢ 0.4

S S S S S S = =

= 02 g 02 g 02 ¢ 02 ¢ 02 ¢ 02 ¢ 02 g 0.2

@ 0o © 0o © 0o © 0o © o © o © o © 0

Figure 8: A conditional inference tree for survival on the Titanic. The barplots below each leaf node highlight
the proportion of survivors in each branch.

A

R Packages used here: party, strucchange, sandwich, zoo, modeltools, stats4, mvtnorm, grid, plotmo, Teach-
ingDemos, plotrix, rpart.plot, rpart.

References

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and regression trees.
California: Wadsworth.

Hothorn, T., Hornik, K., Strobl, C., and Zeileis, A. (2015). party: A Laboratory for Recursive Partytioning.
URL http://CRAN.R-project.org/package=party. R package version 1.0-25.

Milborrow, S. (2015a). plotmo: Plot a Model’s Response and Residuals. URL http://CRAN.R-project.
org/package=plotmo. R package version 3.1.4.

Milborrow, S. (2015b). rpart.plot: Plot 'rpart’ Models: An Enhanced Version of ’plot.rpart’. URL http:
//CRAN.R-project.org/package=rpart.plot. R package version 1.5.3.

Strasser, H. and Weber, C. (1999). On the asymptotic theory of permutation statistics. Mathematical
Methods of Statistics, 8, 220-250.

Therneau, T., Atkinson, B., and Ripley, B. (2015). rpart: Recursive Partitioning and Regression Trees. URL
http://CRAN.R-project.org/package=rpart. R package version 4.1-10.

10

